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A brief analysis is presented of the process of linearization of the mathematical 
thermal conductivity model for determination of thermophysical characteristics by 
non-steady-state methods (flash and constant velocity methods). 

In practical determinations of thermophysical characteristics of materials and thermal 
fluxes, wide use is made of methods based on the principles of the non-steady-state thermal 
regime [I, 2]. Kondrat'ev and his school provided a basis for many methods of determining 
thermal conductivity ~, specific mass or volume heat c, cv = Cp, thermal diffusivity a=~/ev, 
heat liberation coefficient ~, and specific power of surface or volume heat sources qs, qv" 
Because of their common attribute (non-steady-state thermal process) such methods are called 
"non-steady-state methods" or "methods based on the principles of non-steady-state thermal 
regimes" [2]. In [I, 2] the components of the phenomenological thermal conductivity model 
enumerated above were developed from so-called "regular regime methods." In the last two 
decades dozens of methods based on measurement of non-steady-state temperature fields have 
been developed. The "flash method" [3], its modifications, and studies of %, c, and a with 
their aid were the subject of a special study [4]. The analysis of studies published over 
the years performed in [4] revealed the intensive development and expansion which "flash" 
type methods have experienced. The development of non-steady-state methods commenced when 
thermophysicists (then called simply physicists) began the search for coefficients or terms 
in phenomenological thermal conductivity equations. Unfortunately, but for completely under- 
standable reasons, the majority of non-steady-state methods for determination of ~, c, a, q, 

are based on linear thermal conductivity equations in which those quantities are assumed 
constant. At the same time, experimental studies provide %, c, a values which are to a 
greater or lesser degree temperature dependent. Thus, we have one of the paradoxes of thermo- 
physics -- the mathematical model which serves as a basis for acquisition of phenomenological 
thermophysical coefficients is written for constant values of %, ,c, a, while the %, c, a 
values obtained by non-steady-state methods are functions of temperature ~(T), r a(T). But 
the problem is not that they are written as functions of temperature, but that they are ob- 
tained from study of linear mathematical models, and should be derived from more complex non- 
linear non-steady-state thermal conductivity models (phenomenological equations). 

It was shown in [5] that the non-steady-state methods described in [I-3, 6] as well as 
others based on a linear model of non-steady-state thermal conductivity can lead to errors in 
determining i, c, a when the real %, c, a are significantly temperature dependent in the 
temperature range existing in experiment. It should be stressed that we are concerned here 
with the temperature at which the specimen is maintained, and not the temperatures measured 

in the experiment. 

Usually in the flasfi method temperatures are measured on a surface opposite to the heated 
surface. A qualitative analysis of the thermal conductivity equation 

OxO [ L -~xOT] OT =0 (1) (r) --c(T) p(T) O 

will permit an analysis of the error produced by transition from Eq. (i) to a model a = const, 
= const, c = const, p = const, a=~/cp=~/ev. Such an analysis was carried out in [7]. 

The linear model has the form 
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where the subscript Z refers to the temperature in the linear problem. 
formations the nonlinear model of Eq. (i) can be written in the form: 

(2) 

After simple trans- 

a' r  , aT I (aT1,=0 (s)  
ax~ a a.c ~- ~ aT \ ax ] 

o r  

a2T 1 aT i @L aT 
4 - -  = o. (4) 

dx 2 a a~ ~ ax ax 

We will note that in Eqs. (3), (4) a(T)=%(T)/c(T) and l(T), i.e., X, c V, a, are functions 
of temperature. 

Even if the value a = const from Eq. (2) is approximately equal to the mean value of 
a(T) (over some temperature range), it is still true that TZ = T, since the former depends 
on the value of the third term in Eqs. (3) or (4), which plays the role of an internal source 
qv, which is a function of temperature. Thus, if the experimental values Te are obtained 
under the assumption that ~, c, a are functions of T, f(T), there is no way they may be used 
to obtain a from Eq. (2), since it is assumed that the T e used in the models corresponding 
to a physical process, i.e., the model temperature Tim obtained from solutions of Eq. (2), 
cannot be used to obtain L(T). cv(T), a(T), which appear in models with Eqs. (3), (4). 

The class of inverse (internally converse) thermal conductivity problems (obtaining 
cv, a, and other characteristics with non-steady-state methods) is one of the class of con- 
verse heat-exchange problems [5, 7]. A solution of any converse problem can only be ob- 
tained by comparison of Tm and T e. In reduction (forward) methods Te is substituted in the 
reduced solution of the linear problem (2), instead of in Eqs. (3), (4). The solution of the 
linear problem is unique, so that T Z is not always equal to T. Thus, T e is not substituted 
in the problem which physically exiw (it is placed in the linear rather than the nonlinear 
problem). In extremal methods the discrepancy function ~(Tm -- Te) is minimized. If in 
we substitute T m from an incorrectly formulated direct problem, then the ~, c V, a obtained will 
have significant errors. These errors are large in incorrect converse problems due to er- 
rors in Te, but these errors develop because of errors related to the Tm value which has 
been obtained by a methodologically incorrect technique. These latter errors increase the 
discrepancy (Tm- Te), which is equivalent to a growth in experimental error, a growth in 
AT e . 

Below we will present two examples of solutions of converse problems of ~, c, a deter- 
mination by the flash method [3] and the constant velocity method [6, 8]. In both cases 
~(T), cv(T), i.e., a(T), are specified (Fig. i). Data on X, c, 0, and aT were taken from 
[9]. Calculations were performed for c V = c o and ap. Occasionally in the reference lit- 
erature (see, for example, [9]) calculated ap values and tabular aT values (i.e., a values 
presented in handbook tables) differ. For example, in [7] it was shown that for 08 steel 
the maximum difference reaches 10%, with a mean difference of 1-1.5%. As a rule, the hand- 
book authors explain such differences as being due to experimental errors in the various 
studies used in tabulating the handbook. As will become evident below, the differences be- 
tween ap and a T may also be explained by the fact that the calculated ap values are deter- 

mined from % and cV values determined independently, while aT is determined by non-steady- 
state methods which have systemic methodical errors which will be described below. The er- 
rors in determining ~(T), cv('T) and a(T)=)~(T)/cw(T) are generated by the error produced by 
linearizing the mathematical models on which the techniques of [I-4, 6, 8] are based. These 
and other studies of non-steady-state methods use as a starting point for determining char- 
acteristics not nonlinear models (although X(T) and cv(T) as well as a(T) are obtained ex- 
pllcitly), but linear models of non-steady-state thermal conductivity. 

The authors have solved converse problems by the classical "flash" method [3] and the 
"constant velocity" method [7] with linear models in the calculated expressions and the 
graphs presented in [3, 8]. As a control, the same converse problems were solved by ex- 
tremal methods specially developed for solution of converse problems [5]. 
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i. Thermal conductivity coefficient (%), specific heat 
at constant volume (cv), and thermal diffusivity (a) of 
IKhlSNgT stainless steel (%1, cv I, al) and 20Kh steel (~2, 
cV 2, a2) versus temperature, cv, kJ/m3"deg K; %, W/m.deg K; 
a, mZ/sec; T, ~ 

Fig. 2. Change in temperature of surface (i) and middle (2) 
of plate with time in linear (i, 2) and nonlinear (I, 3) 
problems, y, min. 

Error in determination of a = const for the flash method comprised 11.5% even when a is 
referenced to the same effective temperatures as used by the authors of [3]. Errors in a 
determination by the constant velocity method (see Fig. 2 for temperature curves for the non- 
linear problem) comprised from 30 to 85% depending on the heating rate. 

We note that the process of referencing a to some effective temperature in [3] is in 
fact not justifiable and essentially contradicts the model with constant (temperature inde- 
pendent) %, c V. In the constant velocity method, because of the original nonlinear model, 
the T(T) curves can never lie in a fashion such that the parallel lines required for finding 
a are obtained (see curves 2, 3 of Fig. 2). 

Values of %(T), cv(T) (and if necessary a(T)) can be obtained by the technique of [5] 
using the same initial data (experimental model temperatures) with an error significantly 
less than that of the non-steady-state methods with linear models. Special tests performed 
in [5] with reference specimens revealed that ~(T), cv(T), a(T) can be obtained for various 
materials with an uncertainty comparable to the uncertainty in experimental temperature T e, 
if extremal methods with regularization by Tikhonov's method [I0] are used with a nonlinear 
model of non-steady-state thermal conductivity. 

Thus, the mathematical model used for the non-steady-state thermal conductivity pro- 
cess must correspond to physical reality. If ~, cv, a are functions of temperature, then one 
cannot use results from measurement methods based on a linear model to calculate them, with- 
out introducing significant error. 

In those cases where I, cv, and a have been obtained by non-steady-state methods with 
linear models it is necessary to recheck the data on %(T), cv(T), a(T) recommended in the 
reference works. Non-steady-state methods for determining thermophysical characteristics 
of materials are in fact methods for solving mathematical physics problems, incorrect in the 
meaning of Adamar, and analysis of results obtained by such methods must be performed with 
consideration of the errors intrinsic to solution of converse problems. 

NOTATION 

%, a, ~, c, and cv = c o , thermal conductivity and diffusivity, heat liberation coeffi- 
cient, mass and volume heat capacities; a=%/cv; p density; T, temperature; q, thermal flux; 
~, discrepancy function; T~ time; x, coordinate. Subscripts: V, volume; m, model; e, exper- 
imental; Z, linear. 
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EXPERIMENTAL INVESTIGATION OF THE THERMAL CONDUCTIVITY OF FORMIATES 

AS A FUNCTION OF TEMPERATURE 

R. A. Mustafaev and T. P. Musaev UDC 536.22 

Experimental temperature dependences of the coefficient of thermal conductivity of 
formiates at atmospheric pressure are obtained by the method of monotonic heating. 

Data on the temperature dependence of the thermal conductivity of formiates (butyl 
formiate, propyl formiate, hexyl formiate, and octyl formiate) were obtained by the method 
of monotonic heating [i]. Chemically clean reagentswere investigated. The liquids were 
first cleaned by distillation in a vacuum, after which their purity was estimated on a Tsvet- 
4 chromatograph at the Yu. Mamedaliev Institute of Petrochemical Processes of the Academy 
of Sciences of the Adzerbaidzhan SSR. The analysis showed that the content of the principal 
product in the reagents was not less than 99.2%. 

The experiments were performed at atmospheric pressure at temperatures ranging from 
room temperature to the normal boiling temperature of the liquid. The molecular weights of 
the substances studied range from 70 to 186. 

When measuring the coefficient of thermal conductivity of the liquids, one of the im- 
portant problems is the elimination of the influence of convective heat transfer. For this 
reason, in designing the measuring cell, the construction, geometric dimensions, and temper- 
ature conditions were chosen taking this circumstance into account. 

In calculating the thermal conductivity, all corrections that are essential for this 
method were introduced [i]. The maximum, relative, measurement error was estimated to be 
• The reproducibility of the experimental data, obtained at a given temperature, is 
about 0.8%. 

No corrections for heat transfer by radiation in the substances that we investigated 
were introduced. The experimental results obtained on the temperature dependence of the 
thermal conductivity % of the liquids investigated are presented in Table i. 
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